Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Ming-Hu Wu, ${ }^{\text {a }}{ }^{*}$ Wen-Ju Liu, ${ }^{\text {a }}$ Wei-Dong Zou ${ }^{\text {b }}$ and Hai-Yan Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry and Life Science, Xianning College, Xianning 437005, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Physics, Xianning College, Xianning 437005, People's Republic of China

Correspondence e-mail:
minghuwu@hotmail.com

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.055$
$w R$ factor $=0.159$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 4,4'-Dimethyl-2,2'-( $N$-methyliminodimethylene)diphenol

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$, the dihedral angle between the benzene rings is $49.8(3)^{\circ}$. In the crystal structure, the molecules form layers parallel to the $a c$ plane which are stacked along the $b$ axis and which are stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

## Comment

The chemistry of Mannich bases has been the subject of investigations by an ever increasing number of researchers because of their wide applications (Arend et al., 1998). However, the synthesis of an $N, N$-bis(5-substituent-2hydroxybenzyl)amine from a $p$-substituted phenol by the Mannich reaction has not been reported. We have recently synthesized the title compound, (I), by reaction of 4-methylphenol, formaldehyde and methylamine, and its crystal structure is reported here.

(I)

In the molecule (Fig. 1), the two benzene rings are inclined with respect to each other with a dihedral angle of $49.8(3)^{\circ}$. The $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$ torsion angles are -45.55 (19) and $66.4(18)^{\circ}$, respectively, showing that the aminomethyl group is not coplanar with either of the benzene rings.

The structure consists of layers of molecules, stacked along the $b$ axis, stabilized by two intermolecular hydrogen-bonding interactions (Fig. 2 and Table 2).


Figure 1
View of the molecular structure of (I), showing the atom-labeling scheme and displacement ellipsoids are drawn at the $50 \%$ probability level. Hydrogen bonds are shown as dashed lines.

Received 12 June 2006
Accepted 15 June 2006

## Experimental

Formaldehyde ( $8 \mathrm{ml}, 40 \%, 0.1 \mathrm{~mol}$ ) was added slowly with stirring to a mixture of methanol $(35 \mathrm{ml})$, methylamine $(6.5 \mathrm{ml}, 25-30 \%$, $0.05 \mathrm{~mol})$ and 4-methylphenol $(10.9 \mathrm{~g}, 0.1 \mathrm{~mol})$ over a period of 3 h . The mixture was stirred for an additional 60 h at room temperature. The resulting bright-yellow solid was filtered off and washed with methanol. The solid residue was recrystallized twice from ethyl acetate-petroleum ether ( $1: 5 \mathrm{v} / \mathrm{v}$ ) to give colorless crystals of (I) in $63 \%$ yield (m.p. 325 K ), which were suitable for X-ray analysis. MS (EI, 70 eV$) m / z(\%): 272$ (100).

## Crystal data

$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$
$M_{r}=271.35$
Triclinic, $P \overline{1}$
$a=5.8024$ (9) A
$b=10.8867$ (17) Å
$c=12.5346$ (19) $\AA$
$\alpha=93.980(3)^{\circ}$
$\beta=90.847(3)^{\circ}$
$\gamma=100.955(3)^{\circ}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)

$$
T_{\min }=0.978, T_{\max }=0.985
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.159$
$S=1.02$
3416 reflections 190 parameters
$V=775.2(2) \AA^{3}$
$Z=2$
$D_{x}=1.163 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

7457 measured reflections 3416 independent reflections 2423 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=27.3^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0876 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Selected torsion angles ( ${ }^{\circ}$ ).

| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 1$ | $135.25(15)$ | $\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ | $-112.58(15)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 1$ | $-45.55(19)$ | $\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$ | $66.44(18)$ |

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ | $0.829(9)$ | $1.898(13)$ | $2.6594(15)$ | $152(2)$ |
| $\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O} 2$ | $0.829(9)$ | $2.474(19)$ | $2.9910(17)$ | $121.4(18)$ |
| $\mathrm{C}^{\mathrm{H}}-\mathrm{H} A A \mathrm{O}^{\mathrm{i}}$ | 0.97 | 2.57 | $3.540(2)$ | 173 |
| $\mathrm{O}^{\mathrm{O}}-\mathrm{H} 2 A \cdots \mathrm{O}^{1 i}$ | $0.834(9)$ | $1.881(10)$ | $2.7065(15)$ | $170(2)$ |

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$.


Figure 2
The crystal packing of (I), viewed down the $b$ axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

All C-bound H atoms were placed in calculated positions and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ set equal to 1.5 (methyl H atoms) or 1.2 (other H$)$ times $U_{\mathrm{eq}}(\mathrm{C})$. The positions of O-bound H atoms were refined freely $\left[U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})\right]$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

We gratefully acknowledge financial support of this work under the Plan of Group of Young Scientist Innovation Foundation of Hubei Province under grant No. 2004 T006.

## References

Arend, M., Westermann, B. \& Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1044-1070.
Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.


[^0]:    © 2006 International Union of Crystallography All rights reserved

